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Abstract. As the sharing economy has been increasing dramatically in
the world, the mobile-hailed ridesharing companies like Uber and Lyft
in the US, Didi Chuxing in China has begun to challenge traditional
public transportation providers such as bus, subway or taxis. Rideshar-
ing companies have shown their ability to provide the mobility services
where public transit has failed. The human mobility demand that cannot
be satisfied by traditional transportation modes (unmet human mobil-
ity demand) can be served by the ridesharing companies. In this paper,
we provide a ’hydrological’ perspective for inferring unmet mobility de-
mand patterns in cities with multi-source urban data. We observe that
the unmet human mobility demand is proportional to the met mobility
demand by examining the yellow taxi and the Uber data in New York
City. Based on this observation, a Single Linear Reservoir (SLR) model
has been proposed for modeling unmet human mobility demand from
multi-source urban data.
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1 Introduction

As the sharing economy has been increasing dramatically in the world, the
mobile-hailed ridesharing companies like Uber and Lyft in the US, Didi Chuxing
in China has begun to challenge traditional public transportation providers such
as bus, subway or taxis. Ridesharing companies have shown their ability to pro-
vide the mobility services where public transit has failed. The human mobility
demand that cannot be satisfied by traditional transportation modes (unmet
human mobility demand) can be served by the ridesharing companies [10].

In this paper, we provide a ’hydrological’ perspective for inferring unmet
mobility demand patterns (e.g., Uber) in cities with multi-source urban data
(e.g., subway, taxi, bus, or bike data). We observe that the unmet human mobility
demand is proportional to the met mobility demand by examining the yellow
taxi and the Uber data. A SLR model [3] developed previously for rainfall-runoff



analysis has been adopted for modeling unmet mobility demand. The primary
goal of this paper is to establish the mathematical relationship between the urban
human mobility demand and the unmet mobility demand, and hence develop a
’unit hydrograph’ methodology for predicting future unmet mobility demand.

In this paper, urban human mobility status has been simplified with the
following assumptions: 1) The mobility demand can be met by any type of public
transportation including taxi, bus, subway and bike; 2) The demand cannot be
met for a given time period will eventually be met by ridesharing transportation
modes such as Uber. The total urban human mobility demand is defined as
the number of passengers in a region that have travelling demand using ground
transportation, such as subway, taxi, bike or bus, during a given time interval.
The met urban human mobility demand is the amount of passengers that are
able to find a method of transportation within this given time period. The unmet
mobility demand is the number of passengers that cannot find any transportation
mode during this given time period.

First, we observe that the unmet human mobility demand is proportional
to the met mobility demand. Based on this observation, we borrow the ’unit
hydrograph’ concept in hydrology, which is originally the unit pulse response
of runoff for a watershed receiving a unit amount of excess rainfall for a given
duration, is defined here as the response of the number of passengers to choose
Uber given a unit input of urban human mobility. However, unlike hydrological
studies, which are focused on deriving the ’unit hydrograph’ to estimate the
runoff from rainfall input, our aim is to use this method to estimate the change of
storage within the linear reservoir when the total urban human mobility demand
changes. The reason we use the SLR model is that, the urban human mobility
demand [10] is similar to the rainfall-runoff [3]. It is dynamic with spatially
distributed inputs and outputs. There is a peak of the human mobility demand,
like the rainfall input, and a concentration time that the human mobility demand
to be full-filled, like the time the water needs to pass through the system. The
unmet human mobility demand, similar to the runoff water, is the amount of
passengers plan to travel from one location to another, but cannot find the right
public transportation system.

2 Positive Correlation Between the Taxi and Uber
Demand

Ridesharing companies have shown their ability to provide the mobility services
where public transit such as taxi or bus has failed. The human mobility demand
that cannot be satisfied by traditional transportation modes, i.e., the unmet
human mobility demand, can be served by the ridesharing companies such as
Uber or Lyft. In this section, we show that the unmet human mobility demand
is proportional to the met mobility demand by examining the yellow taxi and
the Uber data in New York City [12]. The yellow taxi and Uber utilize different
cruising strategies. The yellow taxis usually use a random cruising strategy, while
the Ubers can go to the passenger’s places when a request is received. Therefore,



when traditional transportation modes fail to meet the human mobility demand,
ridesharing companies such as Uber have the potential to satisfy the unmet
human mobility demand.

2.1 Data-sets

First, we give a description of the data-sets used in this paper and how we
pre-process the data:

Taxi and Uber Data-sets The NYC yellow taxi data-set is a public data-
set provided by the Taxi and Limousine Commission (TLC) [7]. TLC records
the information from all trips completed in yellow taxis in NYC. Each trip
record includes fields capturing pick-up and drop-off time, pick-up and drop-off
locations, trip distances, itemized fares, and passenger counts. In total we have
13,813,031 taxi pick-up records from 13,237 yellow taxis.

The New York Uber data-set is a public data-set from TLC [7] that aims to
study the Uber behaviour. This data-set contains 663,845 Uber pick-up records.
We examine both the yellow taxi and Uber data-sets for one month (June 2014).
We extract following information from the data-set: taxi ID, pick-up time and
the corresponding pick-up location (neighborhood).

Data Pre-processing We use the NYC neighborhood (in total 184 neighbor-
hoods) shape file [6] to map the pick-up GPS points with the associated neigh-
borhoods: if the pick-up location is within the neighborhood, we consider that
neighborhood as the one passengers getting on the taxi and there is one mobil-
ity demand at that neighborhood. All of our data pre-processing were conducted
using the operational data facility at our research center [4, 5]. In particular, the
mapping of taxi pick-ups to geospatial features, which requires a lot of processing
given the volume of the pick-up trips, on a 1200+ core cluster running Cloudera
Data Hub 5.4 with Apache Spark 1.6. The cluster consists of 20 high-end nodes,
each with 24TB of disk, 256GB of RAM, and 64 AMD cores.

2.2 Linear Correlation Between Met and Unmet Human Mobility
Demand

We find that there is a strong positive correlation between the yellow taxi (met
mobility demand) and Uber (unmet mobility demand) pick-ups (see Fig. 1 (a)).
Fig. 1 (b). shows the density of hourly pick-ups of yellow and Uber in the 184
neighborhood. A high density of points are near diagonal line, identifying a clear
positive correlation.

We use the Pearson correlation coefficient to quantify the strength of the
correlation between the hourly pick-ups of yellow and Ubers in all 184 neigh-
borhoods. Our observation verifies our proof in the SLR model with a Pearson
values as 0.82. The p−value is less than 0.01, identifying a very strong statisti-
cal significance. We show that there is a strong positive correlation between the



unmet human mobility demand served by Uber and the met mobility demand
served by yellow taxi in New York City.

(a) Yellow taxi and Uber demand (b) Pearson Correlation

Fig. 1: (a) One week met mobility demand (yellow taxi) and unmet mobility
demand (Uber) in June, 2014. (b) Positive correlation between met mobility
demand and unmet mobility demand.

3 Linear Reservoir Model for Unmet Mobility Demand
Estimation

Since we observe that the unmet human mobility demand is proportional to
the met human mobility demand by examining the yellow taxi and the Uber
data. In this section, we propose a Single Linear Reservoir (SLR) model for
modeling unmet mobility demand based on this observation. The primary goal
is to establish the mathematical relationship between the urban human mobility
demand and the unmet mobility demand, and hence develop a ’unit hydrograph’
methodology for predicting future unmet mobility demand.

The reason we use the SLR model is that, urban human mobility demand
phenomena is similar to the rainfall-runoff pattern in hydrology. It is dynamic
with spatially distributed inputs and outputs. The system is regarded as a single
idealized reservoir with unmet mobility demand as storage (S). The human
mobility demand D (A in discrete time scale) is the input (rainfall) into the
reservoir, and the portion of mobility demand that will be met within a specified
time interval will be the output (runoff) of the reservoir (M). Here the human
mobility demand A can be inferred with multi-view learning algorithm [9].

The linear reservoir model will first be analyzed in continuous time scale,
and then converted to discrete time scale for application in developing ’unit
hydrograph’ for unmet mobility demand analysis. For an ideal linear system,
there is continuity equation on continuous time scale:



dS(t)

dt
= D(t) −M(t) (1)

where t is time.
Since the system is linear, it is reasonable to assume that the unmet mobility

demand is proportional to the output, the met mobility demand. There is:

S(t) = kM(t) (2)

where k is a constant response factor that can either be determined from histor-
ical input, output data, or from the characteristics of the studied urban region.

Combining equation (1) and equation (2), there is:

k
dM(t)

dt
+M(t) = D(t) (3)

The unit impulse response of the system occurs when the system receives an
input of unit amount instantaneously. Let the unit impulse response function at
time t be u(t− τ) (The impulse occurs at τ). There is convolution integral from
the two linear system principles of proportionality and superposition:

M(t) =

t∫
0

D(τ)u(t− τ)dτ (4)

The unit step response of a system r(t) is resulted from an input that changes
from 0 to 1 at time 0 and continues indefinitely at that rate thereafter. With
equation (4) r(t) is found for D(τ) = 1 for τ ≥ 0:

r(t) =

t∫
0

u(t− τ)dτ =

t∫
0

u(l)dl (5)

where l = t− τ .
The unit pulse response function p(t), which is resulted from an input of unit

amount occurring in duration ∆t, can be determined based on the two linear
system principles:

p(t) =
1

∆t
[r(t) − r(t−∆t)] =

1

∆t

t∫
t−∆t

u(l)dl (6)

Similar to hydrological data, urban mobility data will be in discrete time
intervals. In discrete time intervals of duration ∆t, for the input of the system
there is:

Ai =

i∆t∫
(i−1)∆t

A(τ)dt (7)



where Ai is the accumulated urban human mobility demand during the time
interval ∆t. And i = 1, 2, 3, ..., I, where I is the last time interval of ∆t. D(τ) =
Di/∆t for (i− 1)∆t ≤ τ ≤ i∆t. And D(τ) = 0 for τ > I∆t.

The model output will be recorded differently, using the met mobility demand
at the end of jth time interval Mj as the output for the jth time interval:

Mj = M(j∆t) (8)

The unit pulse response at t = j∆t from an input of duration ∆t ending at
(i− 1)∆t is found by equation (6):

p[t− (i− 1)∆t] = p[(j − i+ 1)∆t] =
1

∆t

(j−i+1)∆t∫
(j−i)∆t

u(l)dl (9)

For t ≥ I∆t, convolution integral equation (4) can be broken down into I
parts:

Mj =

j∆t∫
0

D(τ)u(j∆t− τ)dτ =

I∑
i=1

Ai
∆t

i∆t∫
(i−1)∆t

u(j∆t− τ)dτ (10)

In each of the I integrals, there is l = t−τ = j∆t−τ , together with equation
(9), for the jth integral there is:

Ai
∆t

i∆t∫
(i−1)∆t

u(j∆t− τ)dτ =
Ai
∆t

(j−i)∆t∫
(j−i+1)∆t

−u(l)dl

=
Ai
∆t

(j−i+1)∆t∫
(j−i)∆t

u(l)dl = Aip[(j − i+ 1)∆t]

(11)

Let Uj−i+1 = p[(j − i+ 1)∆t], equation (11) can become:

Mj =

I∑
i=1

AiUj−i+1 (12)

Similarly, for t < I∆t, the output can be divided into j parts at time t = j∆t
written as:

Mj =

j∑
i=1

AiUj−i+1 (13)

Combining equation (12) and equation (13), there is:



Mj =

min[I,j]∑
i=1

AiUj−i+1 (14)

Equation (14) can be further expressed in matrix form:

[A][U ] = [M ] (15)

Linear regression can be used to derive U for equation (15) given A and M .
Assume an estimate will be found for U that yields [M̂ ]. The solution can be
found with least square error minimization between [M ] and [M̂ ]. The solution
will be:

[U ] = [[A]T [A]]−1[A]T [M ] (16)

Equation (1) can be rewritten in discrete time as:

Sj − Sj−1 = Aj −Mj (17)

Where Sj is the unmet mobility demand at the end of the jth time interval. And
Aj = 0 for j > I.

Assume the initial unmet mobility demand is zero (S0 = 0), iteratively,
equation (17) can become:

Sj =

min[I,j]∑
j=1

Aj −
j∑
j=1

Mj (18)

4 Discussion

To use this SLR model to estimate the unmet mobility demand, three types of
data will be needed for a given region: (i). Historical data of total human mobility
demand from multiple sources as highlighted (Ahist); (ii). Historical data of met
mobility demand (Mhist); (iii). Future prediction data of total human mobility
demand (Afuture). UseAhist andMhist the ’unit hydrograph’ of mobility demand
(U) in this region can be found using least-squares fitting with equation (16).
The obtained U will be used with Ahist for equation (14) to estimate the future
met mobility demand Mfuture. Finally, with equation (18) the future unmet
mobility demand Sfuture can be estimated.

We provide a recommended work-flow to use the ’unit hydrograph’ approach
in unmet mobility demand prediction (also see Algorithm 1):

1. Delineate the studied city into sub-areas, so that within each sub-area the
total travelling demand is roughly uniformly distributed;

2. For each of the sub-areas, collect multi-source data of total mobility de-
mand and demand that has been met based on relevant historical data-source
and/or results from other models;



3. Within each sub-region, develop the ’unit hydrograph’;
4. Use the ’unit hydrograh’ with the predicted/estimated future mobility de-

mand data to compute the future mobility demand that will be met;
5. Use the computed future mobility demand that will be met together with

the future total mobility demand, the future unmet mobility demand can be
estimated.

Algorithm 1: Linear Reservoir Model for Unmet Mobility Demand Esti-
mation

input : The historical urban human mobility demand Ai with each time intervals ∆t for a
particular region, the met urban human mobility demand Mj with the same time
and spatial frame as Ai from multi-source historical data, including taxi pick-ups,
public transportation usage, bike usage, ect.

output: The future unmet mobility demand Sj

1 Use deconvolution and linear regression to develop the ’unit hydrograph’ U with historical A
and M data;

2 Use derived U from step 1 to predict future Mj by equation (15), given that future A known
(Future A can be estimated from arbitrary transportation demand models);

3 Use Ai and Mj to compute the predicted unmet mobility demand Sj iteratively for each
time interval.

Since this is still an ongoing work, we did not implement and compare the
SLR model with other unmet demand estimation algorithms [1, 2]. In future
work, we will conduct an experiment in NYC, using multi-source data-sets to
validate the accuracy of the model as well as calibrate it (see Fig. 2). We believe
such a model will provide us more insights in understanding the urban human
mobility demand problem, and provide decision support for the design of urban
transportation system.

Fig. 2: Framework for Inferring Unmet Mobility Demand.



5 Related Work

5.1 Mobility Modeling based on Multi-Source Urban Data

Existing urban human mobility are mostly driven by data from a single view, e.g.,
data from a single transportation view such as taxi or subway. The study based
on the single-source data inevitably introduces a bias against city residents not
contributing this type of data, e.g., residents who walk [8] or ride private vehicles.
To address this issue, Zhang et al. [9] propose a human mobility model based on
multi-source urban data. They introduce a multi-view learning framework and
observe that the model outperforms a single-view model by 51% on average. Zhao
et al. [11] decompose the human mobility trips into different classes according
to different transportation modes, such as Walk/Run, Bike, Train/Subway or
Car/Taxi/Bus. They observe that human mobility can be modelled as a mixture
of different transportation modes, and these single transportation movement
patterns can be approximated by a log-normal distribution.

5.2 Inferring Unmet Taxi Demand

Recent papers try to infer the unmet taxi demand, the number of people who
need a taxi but could not find one, from the taxi data-set. In [2] the authors
combine flight arrival with taxi demand and predict the passenger demand at
different airport terminals in Singapore use queuing theory. Anwar et. al [1] for-
malize the unmet taxi demand problem and present a novel heuristic algorithm
to estimate it without any additional information. They infer the unmet taxi
demand from taxis with empty services and show that it can be used to quantify
the unmet demand.

6 Conclusion and Future Work

In this paper we examine the problem of predicting unmet mobility demand
with a hydrological perspective. A SLR model is developed for modeling unmet
mobility demand. We establish the mathematical relationship between the urban
human mobility demand and the unmet mobility demand, and hence develop a
’unit hydrograph’ methodology for predicting future unmet mobility demand.
In the next step, we will conduct an experiment in NYC, using multi-source
data-sets to validate the accuracy of the model as well as calibrate it. We believe
such a model will provide us more insights in understanding the urban human
mobility demand problem, and provide decision support for the design of urban
transportation system.
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