
Using Workflow Medleys to Streamline Exploratory
Tasks

Emanuele Santos1,2, David Koop1,2, Huy T. Vo1,2, Erik W. Anderson1,2, Juliana
Freire2, and Cláudio Silva1,2

1 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
2 School of Computing, University of Utah, Salt Lake City, UT, USA

{esantos,dakoop,hvo,eranders,juliana,csilva}@cs.utah.edu

Abstract. To analyze and understand the growing wealth of scientific data, com-
plex workflows need to be assembled, often requiring the combination of loosely-
coupled resources, specialized libraries, distributed computing infrastructure, and
Web services. However, constructing these workflows is a non-trivial task, espe-
cially for users who do not have programming expertise. This problem is com-
pounded for exploratory tasks, where the workflows need to be iteratively refined.
In this paper, we introduce workflow medleys, a new approach for manipulating
collections of workflows. We propose a workflow manipulation language that
includes operations that are common in exploratory tasks and present a visual
interface designed for this language. We briefly discuss how medleys have been
applied in two (real) applications.

1 Introduction

The trend towards service-oriented architectures has expanded to a number of domains.
Recently, a new class of tools have emerged that help users to leverage and integrate
services in a collaborative fashion. Yahoo! Pipes [27] is an example of mashup builder
that provides a graphical user interface for assembling pipelines that combine RSS feeds
and Web services. Scientific workflow systems, such as Taverna [23] and VisTrails [26],
provide a more comprehensive framework which, in addition to services, also supports
the integration of general tools and libraries.

The ability to construct complex applications, be they scientific workflows or Web
mashups, by weaving services together is very appealing and has many benefits. Al-
though workflow systems are natural candidates as solutions to this problem, there
are two important challenges that need to be addressed: usability and support for ex-
ploratory tasks. While there has been substantial work on workflow and application
integration systems [1], such systems have primarily been designed for power users in
enterprise settings. Scientists who use scientific workflow systems do not necessarily
have programming expertise. Thus, it is not reasonable to assume that they can write
complex control-flow specifications (e.g., using languages such as BPEL [3]), even if a
visual programming interface is available.

In addition, workflow systems have been traditionally used to automate (complex)
processes, which often require a laborious, time-consuming design cycle. In a number
of new applications, however, workflows are assembled for exploratory, and sometimes



one-of-a-kind tasks. Instead of designing a single workflow that will be run thousands
of times, a user (or set of users) manipulates ensembles of workflows that are iteratively
refined as she formulates and test hypotheses [13]. Such tasks may require, for example,
experimenting with different combinations of parameter values, data sets, or algorithms.
Consider the following example of an exploratory task.

Example 1 (Selecting the best learning classifier) To build an effective learning
classifier, a user must often tediously build and compare alternative learning techniques
as well as experiment with different configurations for each technique. For text clas-
sification, support vector machines (SVMs) can be extremely effective [16], but their
accuracy depends on a variety of model parameters including the kernel function f , the
scaling factor γ, and the penalty parameter of the error term C. Different kernel types
(linear, polynomial, radial basis function (RBF), and sigmoid) need to be investigated
and parameters tuned for each. Thus, selecting the best classifier requires constructing
several classifiers, testing them all, and comparing their error rates. Figure 1(c) shows
the accuracy rates of three distinct SVM classifiers using C values 0.25, 1, 2, 4 over the
test data.

Suppose a workflow designer constructs three workflows, one for each kernel type.
Figure 1(a) shows the structure of one of these workflows. This workflow constructs a
classifier using training data retrieved from the Web and computes its error rate. Using
a similar process, it also derives the error rate for the classifier on the test data. The
error rates from the two runs are then sent to a Matplotlib [14] module which generates
the plots that are subsequently displayed on the screen. Using a visual programming
interface (such as the ones provided by workflow systems [23, 10]), to compare the
different configurations for C values 0.25, 1, 2, 4, the user has to modify, run and save
the results of each workflow. This scenario requires 12 modifications and 12 saved files.
Furthermore, if new test (or training) data is made available, the whole process needs
to be repeated.

Workflow Medleys. In this paper, we propose a new approach to support exploratory
tasks that involve ensembles of workflows, or workflow medleys. This approach relies
on simplified views of workflows that are more intuitive for users, along with operators
for manipulating the workflows as a set.

For the scenario above, we desire to create a simplified interface for the given work-
flows. Note that even small workflows, like the one shown in Figure 1(a) can have many
different modules, connections, and parameters, but for most tasks, only a small subset
needs to be manipulated. As illustrated in Figure 1(b), simpler views of these work-
flows might hide all but this subset of entities. In our example, these might include the
names of the input files (dev file and train file) and the C parameter (cost).
Then, to compare the different classifier configurations, as Figure 1(c) illustrates, we
can synchronize the appropriate parameters across workflows, and then set all of these
parameters to the appropriate values. Note that setting the value of a single parameter,
e.g., cost, updates all parameters that are synchronized with it. This provides a means
to efficiently compute and compare the 12 different methods. Also, if new test data is
made available, all plots can be re-generated by updating a the dev file parameter
only once.



Fig. 1. Example of creating a medley for Example 1. (a) The developer marks configurable pieces
of the workflow to create a template. (b) A workflow view is created based on the workflow
template. (c) A medley of SVM Classifiers. The connections mean that synchronization is taking
place.

Note that the same mechanism used to explore parameter spaces can be used to
update the workflow definitions in bulk. For example, by synchronizing the subwork-
flow (variable publishing in the medley shown in Figure 1(c)) which consists of the
modules responsible for displaying the results, a single update operation can be used
to replace this subworkflow with a different set of modules. For example, instead of
displaying the results on the screen, the new version may generate an HTML page with
the images embedded.

Outline and Contributions. We propose a new approach that streamlines exploratory
tasks that require the composition of multiple workflows. This approach is general and
can be combined with existing workflow and workflow-based systems, such as Ya-
hoo! Pipes, Taverna and Kepler. In addition, it can be naturally mapped into an intuitive
interface that is suitable for users that are not expert programmers. We introduce the
medley model in Section 2. This model consists of a set of concepts and operations for
manipulating workflows and captures operations that are common in exploratory tasks.
In Section 3 we discuss our first prototype of a user interface for the medley model.
We describe how it is implemented and used. We have explored the use of medleys in
two real applications: chemical informatics and a comparative analysis of isosurface ex-
traction algorithms. We describe our experiences in Section 4. In Section 5, we review
related work and we conclude in Section 6.

2 Manipulating Workflow Specifications
In this section, we show how manipulation of a workflow collection can be simplified
by developing the concepts of workflow templates, workflow views, and medleys. We
begin by reviewing the definition of a workflow along with basic workflow operations,
and then introduce the workflow template as a way for designers to designate config-
urable pieces of a workflows. A workflow view is the projection of a workflow according
to a workflow template, and a medley is a collection of workflow views along with a



set of links between them that synchronize or compose the views. Throughout this sec-
tion, we assume a dataflow model for workflows [12]. Note that all of the operations
and concepts we introduce are independent of the underlying workflow management
system.

2.1 Workflows
Definition 1. A workflow w(M,C) is a set of modules, M , along with a set of con-
nections, C, linking the modules. Each module m ∈ M is associated with a tuple
(Im, Om, Pm), where Im corresponds to a set of input ports, Om corresponds to a set
of output ports, and Pm is a list of parameters. Each parameter p ∈ Pm is associated
with a value v. A connection (o, i) links an output port o from a module m1 to an input
port i of another module m2. o ∈ Om1 is the source port and i ∈ Im2 is the target
port. m1 and m2 can only be connected through ports o and i if the types of the ports
are compatible. Sources are modules where no target port is connected, and sinks are
modules whose no source port is connected. Parameters can also have a type, and the
value of a parameter must be an instance of that type.
Definition 2. Given a workflow w(M,C), a subworkflow ws(M ′, C ′) is a workflow
whereM ′ ⊂M and C ′ ⊂ C such that c ∈ C ′ if and only if c connectsm1 tom2 where
m1,m2 ∈M ′.

While there are a variety of workflow operations we could discuss, we will high-
light two: enactment, executing a workflow, and substitution, changing workflow com-
ponents. These operations can be used both when designing a workflow and when in-
teracting with a completed workflow.

Enactment. A workflow enactment is the execution of a workflow in the order de-
termined by the network of modules and connections. We recursively update modules
starting with the sinks until all modules are “up-to-date”. Because each module depends
on all of its inputs, these data requests propagate all the way to the sources (which ref-
erence the initial data), who update their outputs, allowing modules connected to their
output ports to then execute. Execution continues until each sink has been executed.

Substitution. Substitution allows workflow components (e.g., parameter values and
modules) to be replaced. More formally, given a workflow w(M,C), the operation
substituteParameterw(m, p, v) assigns value v to a parameter p of a modulem in work-
flow w, provided that the types of v and p are compatible. Given a second workflow
ws(M ′, C ′), the operation substituteWorkfloww(M∗, ws) replaces the subworkflow in-
duced by the modules in M∗ ⊂ M with the workflow ws. In order to accomplish this,
we must create the connections that link ws back into the workflow w. Each connection
that links the modules in M∗ to those in M −M∗ is remapped to a connection linking
M ′ to those in M −M∗ by matching the types of the ports in the original connections
to match those in the new connections.

2.2 Simplifying Workflows

As outlined earlier, workflow systems allow users to create and execute workflows. A
limitation of these systems is the difficulty involved in modifying an existing workflow
by users other than the original workflow developer. Our goal is to simplify these mod-
ifications and allow users to interact with ensembles of workflows in a more intuitive



manner. Our approach is to allow the designer to designate configurable pieces of the
workflow through workflow templates. Such designations help users determine proper
inputs as well as experiment with different workflow variations. From such templates,
we can create workflow views that abstract much of the complexity of workflows. Users
can then combine workflow views in medleys using synchronization and composition
operations.

Workflow Templates. We introduce a workflow template as a workflow that allows de-
signers to define reconfigurable pieces of the workflow in a hierarchical way. Users can
select and label parameters or subworkflows using a nomenclature that is meaningful
for a given application or task. Figure 1(a) shows a workflow template generated for the
classification workflow described in Example 1.

Note that the designer selected a subset of parameters as well as the plotting sub-
workflow that should be exposed. The root of the template hierarchy represents the
workflow, and its children and descendants correspond to configurable parameters and
subworkflows. We refer to each element in the the template hierarchy as a workflow
template node. Nodes that correspond to subworkflows are represented as rectangles
and parameters as ellipses. Note that labels are unique in a given hierarchy level. By
representing the template as a hierarchy, our approach is able to handle arbitrary nest-
ing of workflows.

Workflow template nodes provide the same operations of a workflow as well as other
specific operations for labeling and removing labels, for creating, adding and removing
child nodes, creating and removing connections between template nodes and between
template nodes and modules, and for materializing a workflow.

Workflow Views. In a workflow template, important and configurable elements (i.e.,
modules, parameters, and subworkflows) are selected, and a workflow view effectively
hides all unselected elements. More formally, a workflow view wv is a projection of a
workflow w where only a subset of the workflow elements are exposed for direct inter-
action. We refer to the exposed elements as variables. Any workflow element not ex-
posed by a workflow view cannot be directly changed in the view. However, a workflow
view maintains a reference to the original workflow, and thus views can be enacted by
enacting the underlying workflow. Notice that a workflow view can be generated from
a workflow template. In fact, the parameters and configurable subworkflows are also
represented as a hierarchy that mirrors the one for the template hierarchy. Figure 1(b)
shows a view (RBF Classifier) derived from the template in Figure 1(a).

Medleys. For exploratory tasks, a user often needs to create and manipulate a set of
workflows, as shown in our machine learning example. To support this, we introduce a
medley M as a collection of (related) workflow views along with a set of relationships
between the views. These relationships are defined by operations linking the views,
including synchronization and composition.

When two views are synchronized, one or more variables from each view are linked.
A variable x in a workflow view wv ∈M can be synchronized with any variable x′ in
another view w′v ∈ M if x and x′ have the same type. Then, for any pair of linked
variables, binding either to a value v ensures that each variable is set to v.



The ability to synchronize variables is useful for tasks like comparative visualization
since we can ensure that parameters across different workflows whose values should
be the same will indeed be the same. Consider again the machine learning example,
and suppose we have a medley with views for the workflows that use the different
classifiers. By synchronizing their input files and cost values, a user could quickly set
these parameters once and their values would be automatically propagated to the three
workflows. Furthermore, synchronization enables a user to efficiently explore different
configurations. Instead of setting values for each workflow individually—which can be
both time consuming and error prone, the value for a parameter is set only once and is
automatically propagated to all synchronized variables in multiple views.

Two views are composed by connecting an output port in one view to the input
port of the other. In our example, composition could be used to pass the HTML file
generated by the two classifier views to a view that sends files to a web server via FTP.
In addition, a medley can combine composition and synchronization to easily construct
a variety of analyses and explorations.

Note that we could consider synchronization or composition on workflows instead
of workflow views, but this could be much more complicated for the user. Because
workflow views reduce the number of components that are exposed, they make it much
easier to identify how workflows can be integrated and synchronized.

3 Creating and Interacting with Medleys
While workflow templates, workflow views, and medleys allow users to simplify and
integrate workflows, constructing these concepts needs to be straightforward. For this
reason, we have implemented these operations using an intuitive user interface. In this
section, we describe our initial implementation of such an interface.

Creating Workflow Templates and Views. Developers use the Workflow Template
Editor to create a workflow template, by selecting and labeling parameters and sub-
workflows, as shown in Figure 1(a). Given a workflow template, displaying the corre-
sponding workflow view requires a simplified interface. In our implementation, we use
a table-based layout where each variable name and editable value are displayed (see
Figure 1(c)).

Once a template is created, one of the operations supported by the Template Editor
is view creation. While configuring a view, users can set the visibility of the parameters
and configurable subworkflows, as well as select suggestions from the list stored in the
template. These suggestions will guide the end users to pick meaningful values for the
parameters when they are not familiar with the workflows. Note that both templates and
views can be stored in a repository where they can be accessed later.

Creating and Manipulating Medleys. To combine workflow views in a medley, the
developer uses the Medley Editor. The views stored in the Workflow View Repository
are displayed on a panel and they can be dragged and dropped on a canvas. Once on the
canvas, the medley operations (i.e., synchronization and composition) can be applied to
the views. A screenshot of part of the Medley Editor is shown in Figure 1(c).

Each variable in a view has an associated handle (see the circles on the left and right
of each variable name in the workflow view in Figure 1(b)). By connecting the handles
for two variables in two distinct views, their values are synchronized. To simplify the



task of identifying variables to be synchronized, when the developer starts to create a
connection all the variables that are compatible with that variable are highlighted.

Demonstration Overview. In this demonstration, we will use this interface to create
and manipulate medleys for exploratory tasks in scientific visualization scenarios. In
particular, we will demonstrate how to create workflow views and how to synchronize
their variables in a medley.

4 Case studies
We tested how medleys can be used in exploratory tasks in two different applications.

Integrating Chemical Informatics Web Services. The first application consisted of
integrating chemical informatics web services to locate information about a specific
compound and graphically visualize it. To perform this task, a user must invoke several
services provided by Chembiogrid [4]. The first workflow fetches the SMILES 3 code
of a molecule id. The second and third workflows fetch the 2D image and the 3D model
representing the SMILES code, respectively. As the user is not able to render the 3D
model in the format returned by the web service, another web service, sdfToPdb, is used
to convert the data to pdb format. Finally, a fourth workflow is used to render and dis-
play the molecule using a ball-and-stick model. Completing this task using a workflow
system that supports Web services, such as for example, Taverna, a user needs to as-
semble a workflow that combines these four workflows, carefully connecting outputs to
inputs. In contrast, by creating a medley with workflow views created for the four work-
flows described above, the user can synchronize and compose the workflows without
having to directly modify the structure of workflows.

Comparative Analysis of Isosurface Extraction Algorithms. One of our collabo-
rators needed to perform a comparative analysis of several algorithms for extracting
isosurfaces [20], involving the visualization of the meshes produced by the different
algorithms and the histograms that accumulate quality information on each mesh. Al-
though a workflow system would help him structure his experiment (e.g., by creating a
workflow for each algorithm that both renders the mesh and displays the histogram), it
would require him to modify the parameters on each workflow one by one, and repeat
this tedious process over and over until a good visualization is found. We created a med-
ley containing workflow views for each algorithm our collaborator wanted to evaluate.
He performed the comparative analysis using this medley, by changing parameters and
datasets and without having to manipulate the workflows directly. Although the use of a
workflow system would help on structuring the experiments, it would still require users
to modify the parameters on each workflow one by one, and repeat this tedious process
over and over until a good result is found.

5 Related Work
Workflows and workflow-based systems have emerged as an alternative to ad-hoc ap-
proaches to data exploration commonly used in the scientific community [10, 23, 19,

3 SMILES stands for Simplified Molecular Input Line Entry Specification and it is a linear
notation that uses alphanumeric characters to encode molecular structure.



26, 6, 15, 9]. Workflow systems provide languages with well-defined semantics to spec-
ify computational processes which integrate existing applications according to a set of
rules [1, 11, 24, 17]. Not only do they support the automation of repetitive tasks, but
they can also capture complex analysis processes at various levels of detail and sys-
tematically capture provenance information for the derived data products [5]. Workflow
systems, however, have been primarily designed for expert programmers and to auto-
mate repetitive processes. Our goal with the medley approach is to provide casual users
with intuitive interfaces to combine services on-the-fly and perform exploratory tasks
through workflows.

Social Web sites and web-based communities (e.g., Flickr [8], Facebook [7], Ya-
hoo! Pipes [27]), which facilitate collaboration and sharing between users, are becom-
ing increasingly popular. An important benefit of these sites is that they enable users to
leverage the wisdom of the crowds. In the (very) recent past, a new class of Web site
has emerged that enables users to upload and collectively analyze many types of data
(see e.g., [25, 22]). These are part of a broad phenomenon that has been called “social
data analysis” [21]. Many Eyes [25] (developed at IBM research) is a site for sharing
and commenting on visualizations. Users can upload any data set and visualize the data
using a wide range of tools provided by Many Eyes (e.g., line graphs, stack graphs,
bar charts, block histograms, treemaps). This trend is expanding to the scientific do-
main where there is an increasing number of collaboratories. An example of a social
Web community in this domain is the new myExperiment site [18]. Their goal is to
enable “scientists to share, re-use and re-purpose their workflows and reduce time-to-
experiment, share expertise and avoid reinvention”. The medley infrastructure can be
integrated with these sites to provide a flexible mechanism for users to combine multiple
workflows and services from a large, shared pool. In such a scenario, medleys can also
serve as an unobtrusive mechanism for capturing semantics and domain-specific knowl-
edge. For example, when a user synchronizes components from different services, this
indicates that these components are related (and compatible). Such knowledge can be
re-used to help other users compose new applications.

Biton et al. [2] proposed the creation of views over workflows. Their views are
similar to our notion of workflow view. Their objective, however differs from ours in
that their goal is to deal with the overload of provenance derived from the workflow
runs, by controlling the granularity at which provenance is collected (or published)
through these views.

6 Conclusion
Workflow medleys represent a new approach for manipulating ensembles of workflows.
Our framework combines a set of operations that are common in exploratory tasks
with an intuitive visual interface. We have studied our approach by examining ways it
could be applied to different application areas, and have seen that medleys help simplify
workflow-based exploratory tasks. We plan to conduct user studies to further evaluate
our approach with respect to usability and effectiveness.

Acknowledgments. This work is partially supported by the NSF (under grants IIS-
0513692, CCF-0401498, EIA-0323604, CNS-0514485, IIS-0534628, CNS-0528201,
OISE-0405402), the DOE, and an IBM Faculty Award. E. Santos is partially supported
by a CAPES/Fulbright fellowship.



References

1. W. Aalst and K. Hee. Workflow Management: Models, Methods, and Systems. MIT Press,
2002.

2. O. Biton, S. Cohen-Boulakia, and S. B. Davidson. Zoom*userviews: querying relevant
provenance in workflow systems. In VLDB ’07: Proceedings of the 33rd international con-
ference on Very large data bases, pages 1366–1369. VLDB Endowment, 2007.

3. Business process execution language for web services version 1.1.
http://www.ibm.com/developerworks/library/specification/ws-bpel, Feb. 2008.

4. The Chembiogrid web site. http://www.chembiogrid.org.
5. E. Deelman and Y. Gil. NSF Workshop on Challenges of Scientific Workflows. Technical

report, NSF, 2006. http://vtcpc.isi.edu/wiki/index.php/Main Page.
6. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.

Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: a Framework for Mapping
Complex Scientific Workflows onto Distributed Systems. Scientific Programming Journal,
13(3):219–237, 2005.

7. Facebook. http://www.facebook.com.
8. Flickr. http://www.flickr.com.
9. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system for repre-

senting, querying and automating data derivation. In Statistical and Scientific Database
Management (SSDBM), pages 37–46, 2002.

10. The Kepler Project. http://kepler-project.org.
11. P. Lawrence, editor. Workflow Handbook. Workflow Management Coalition. John Wiley and

Sons, 1997.
12. E. A. Lee and T. M. Parks. Dataflow Process Networks. Proceedings of the IEEE, 83(5):773–

801, 1995.
13. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo. Managing

rapidly-evolving scientific workflows. In International Provenance and Annotation Work-
shop (IPAW), LNCS 4145, pages 10–18, 2006. Invited paper.

14. The matplotlib library. http://matplotlib.sourceforge.net.
15. Microsoft Workflow Foundation.

http://msdn2.microsoft.com/en-us/netframework/aa663322.aspx.
16. T. Mitchell. Machine Learning. McGraw Hill, 1997.
17. C. Mohan, G. Alonso, R. Günthör, and M. Kamath. Exotica: A research perspective ob

workflow management systems. IEEE Data Engineering Bulletin, 18(1):19–26, 1995.
18. myexperiment. http://www.myexperiment.org.
19. S. G. Parker and C. R. Johnson. SCIRun: a scientific programming environment for compu-

tational steering. In Supercomputing, 1995.
20. W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit An Object-Oriented

Approach To 3D Graphics. Kitware, 2003.
21. Social data analysis workshop, 2008.

http://researchweb.watson.ibm.com/visual/social data analysis workshop.
22. Swivel. http://www.swivel.com.
23. The Taverna Project. http://taverna.sourceforge.net.
24. W. van der Aalst. Business process management: A personal view. Business Process Man-

agement Journal, 10(2):135–139, 2004.
25. F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon. Many eyes: A site for

visualization at internet scale. IEEE Transactions on Visualization and Computer Graphics,
13(6):1121–1128, 2007.

26. The VisTrails Project. http://www.vistrails.org.
27. Yahoo! Pipes. http://pipes.yahoo.com.


